市場原理に基づく 分散計算サービスの割り当て方法

藤原一毅[†],合田憲人^{††}小野功^{*} †総合研究大学院大学 †国立情報学研究所 *東京工業大学

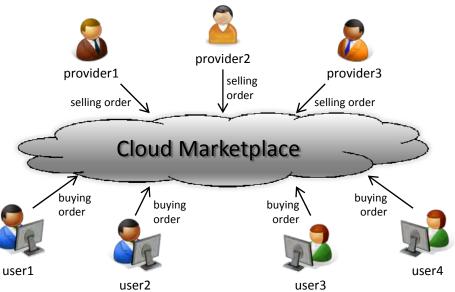
情報処理学会ウィンターワークショップ2011・イン・修善寺 / 2011.01.21

Agenda

1. Motivation

- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work

7. Conclusion


Motivation

• Cloud computing spreads rapidly to business community

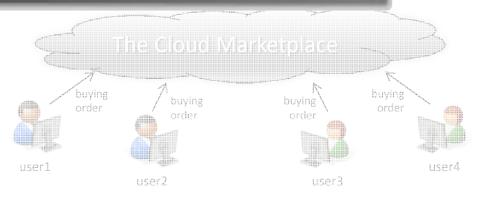
- Computing resources are virtualized and distributed as services
- "Resource" can be hardware, software, bandwidth, etc.
- It's difficult to allocate resources efficiently
 - Among hundreds of providers and thousands of users
 - Satisfying QoS and budget limitation

• Market-based Allocation is a promising approach

- Discussed for a decade
- Providers/users sell/buy the resources in a marketplace
- Price is determined through fair competition
- Not yet realized, but should be needed in the near future

Motivation

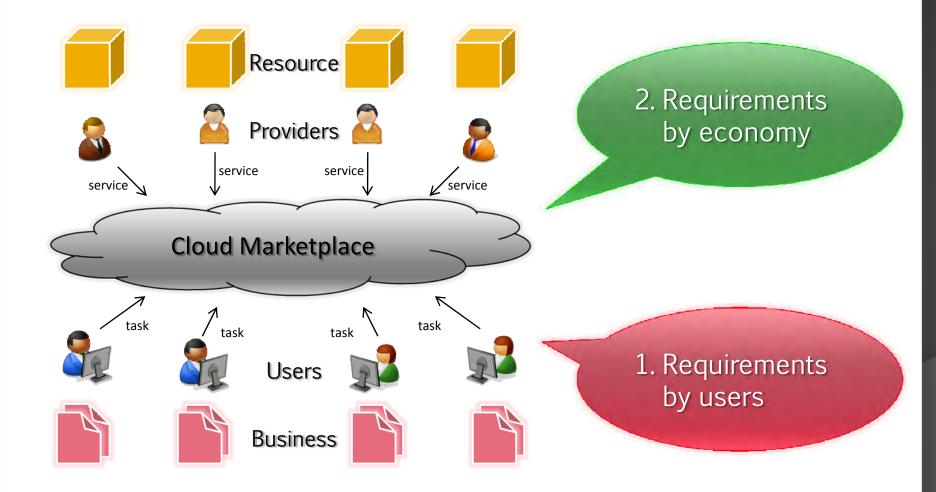
Cloud computing spreads rapidly to business community


- Computing resources are virtualized and distributed as services
- "Resource" can be hardware, software, bandwidth, etc.

the state of the second second

Our goal is...

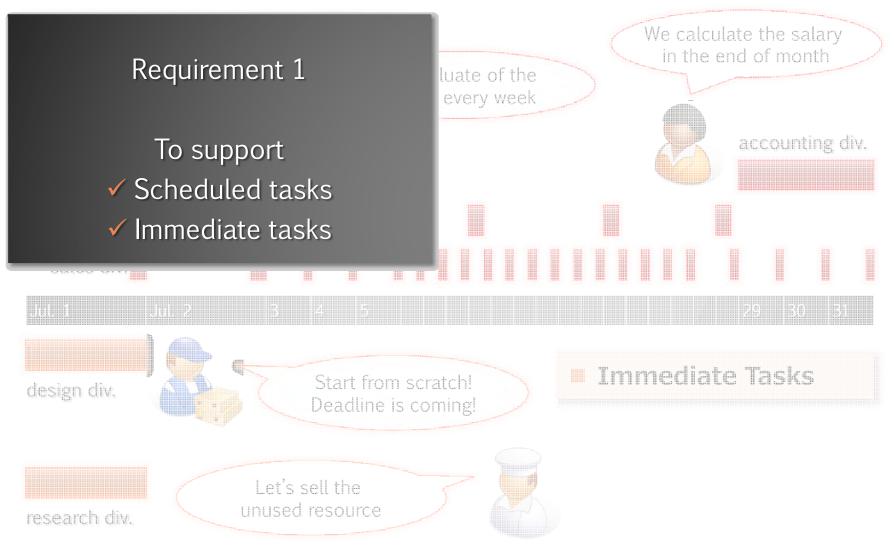
 To propose a market mechanism to allocate resources efficiently in the cloud computing environment


- Price is determined through fair competition
- Not yet realized, but should be needed in the near future

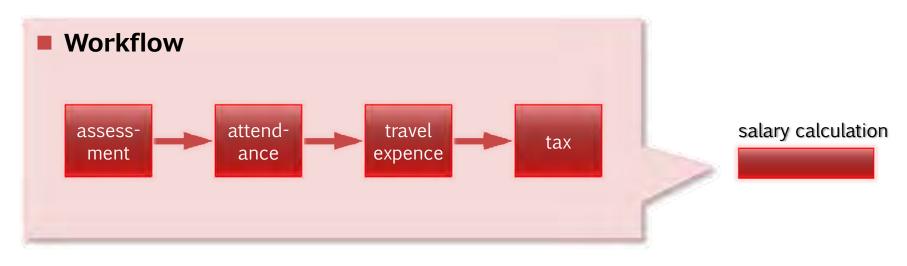
Agenda

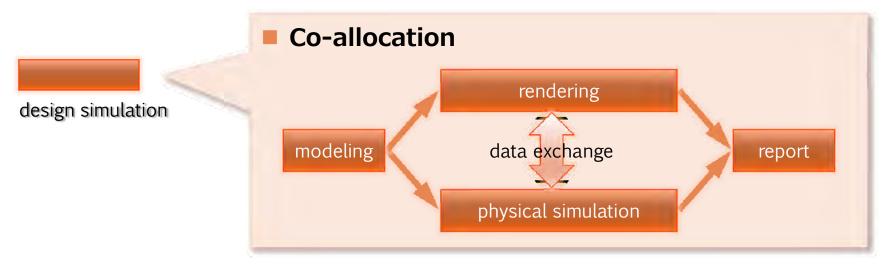

- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work
- 7. Conclusion

Cloud Computing Environment

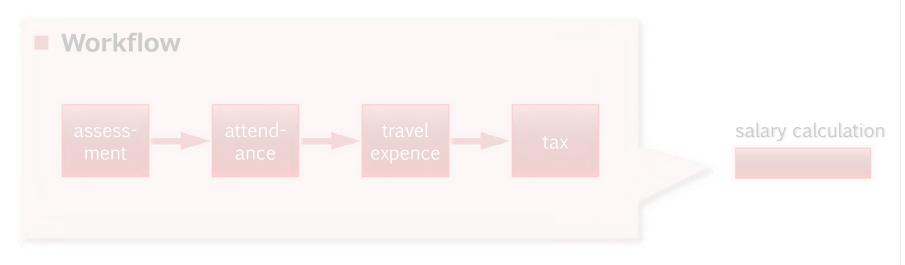

Requirements by Users (1)

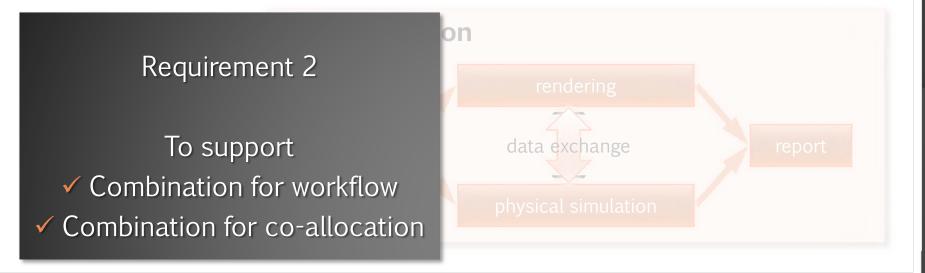
• Typical use of cloud services in a company


Requirements by Users (1)


Typical use of cloud services in a company

Requirements by Users (2)


• A task may be a combination of subtasks



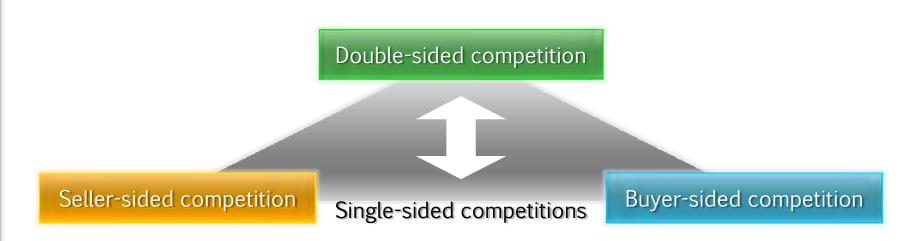
Requirements by Users (2)

• A task may be a combination of subtasks

Requirements by Economy (1)

- For a market mechanism, auction theory is used to get an efficient outcome
 - Economic efficiency means a Pareto-optimal allocation
 Where no resource is wasted
 - Maximizing the total welfare generated by the trading is a sufficient condition for economic efficiency

Requirements by Economy (1)


- For a market mechanism, auction theory is used to get an efficient outcome
 - Economic efficiency means a Pa
 Where no resource is wasted
 - Maximizing the total welfare ger is a sufficient condition for econ

To support Pareto-optimal allocation with no wasted resources

Requirements by Economy (2)

• Auction schemes are classified as:

Double-sided competition is better to encourage a fair exchange
 Where no advantage is given on either side

Requirements by Economy (2)

• Auction schemes are classified as:

Double-sided competition

Seller-sided competition

Single-sided competitions

Buyer-sided competition

Double-sided competition is better
 Where no advantage is given on the

Requirement 4

To support Double-sided competition with no advantage on either side

Our Approach

• To meet these requirements we employed...

Forward Market & Spot Market

To support ✓ Scheduled tasks ✓ Immediate tasks

Mixed Integer Programming

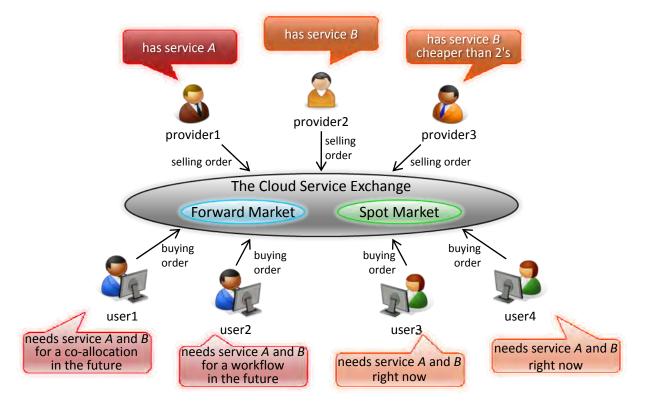
To support Pareto-optimal allocation with no wasted resources

Combinational Double Auction

To support

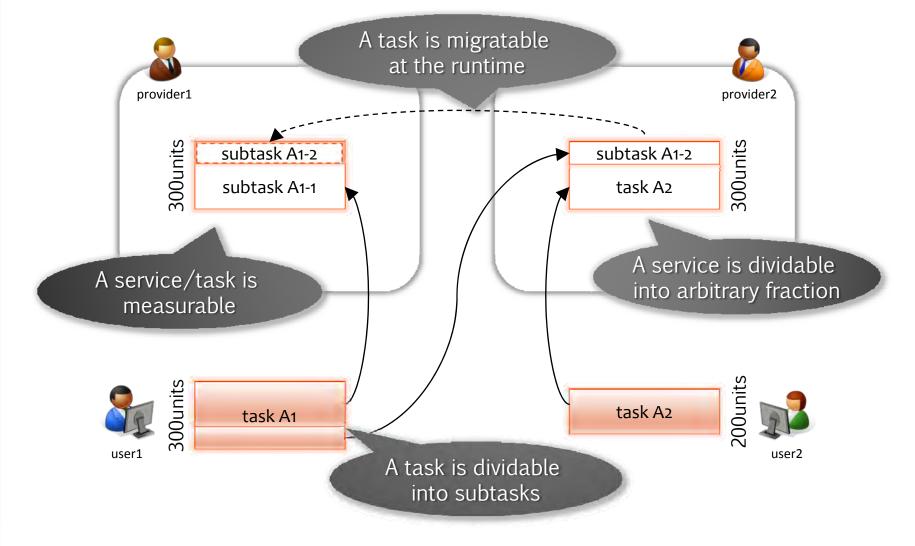
Combination for workflow
Combination for co-allocation

To support ✓ Double-sided competition with no advantage on either side


Agenda

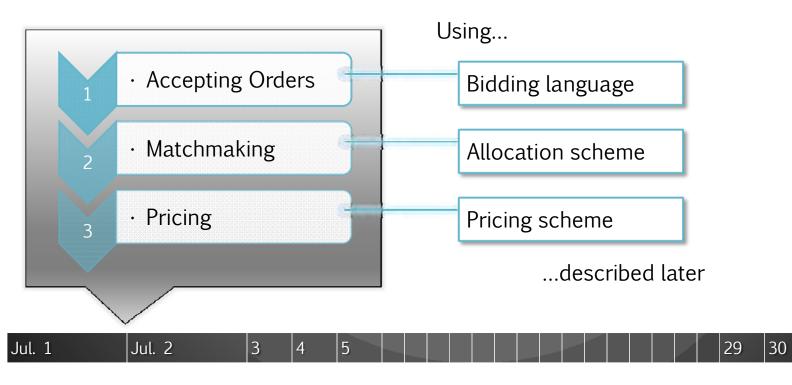
- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work
- 7. Conclusion

Proposed Market Mechanism – Overview (1)


Overview

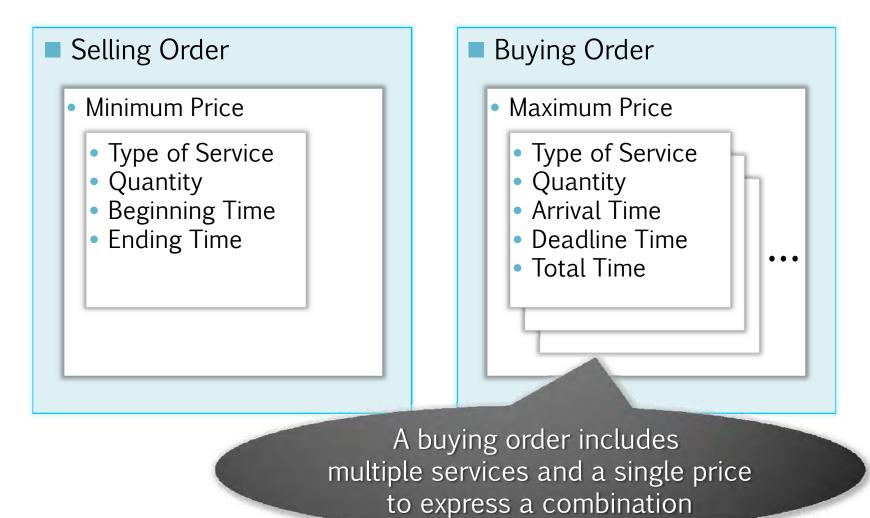
- There is a centralized marketplace "the Cloud Service Exchange"
- The exchange has the **forward market** and the **spot market**
- Providers/Users send selling/buying orders to the markets according to their own strategies

Proposed Market Mechanism – Overview (2)


• Assumption on Services and Tasks

Proposed Market Mechanism – Forward Market (1)

Forward market


- Accepts orders at any time
 - An order includes services used in **future timeslots** (e.g. 720 timeslots)
- Performs matchmaking periodically (e.g. every 24 hours)
- Determines the trading price for each match

31

Proposed Market Mechanism – Forward Market (2)

• Bidding language to make orders

Proposed Market Mechanism – Forward Market (3)

Allocation scheme for matchmaking

 Maximizes the total welfare by optimization with mixed integer programming

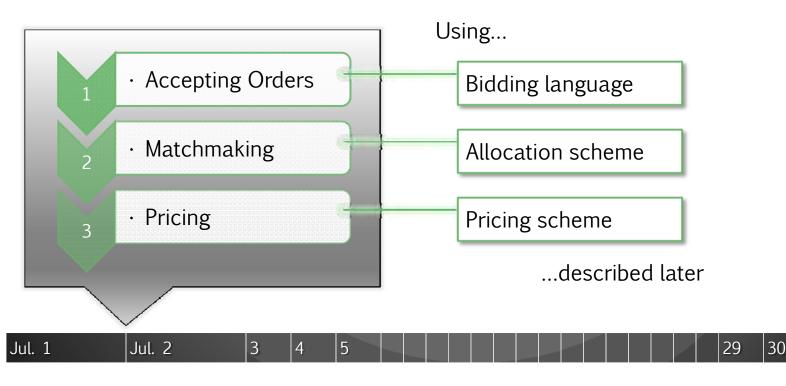
• Objective Function $w = \Sigma$ (buying order price – selling order price) \rightarrow max.

Variables

- $u_{j} = \{0,1\}:$ $x_{j,k} = \{0,1\}:$ $z_{j,k,t} = \{0,1\}:$ $y_{i,j,k,t} = [0,1]:$ timeslot t
- whether user j's order is fulfilled
- whether user *j* could buy service *k*
- whether user j could buy service k on timeslot t
- percentage of service k sold by provider i to user j on

er

Proposed Market Mechanism – Forward Market (4)


- Pricing scheme to determine the trading price
 - Distributes the welfare generated by the trading
 - An extended K-pricing scheme is used to calculate the distribution

$$w_{i} = v_{i} - \sum_{k=1}^{|N|} \sum_{j=1}^{|T|} v_{i} y_{i,j,k,t}, \qquad (14)$$
Details described on the paper
$$p_{i,j} = \sum_{k=1}^{|T|} \sum_{j=1}^{|T|} v_{i} y_{i,j,k,t} + K \sum_{k=1}^{|T|} \sum_{j=1}^{|T|} w_{j} r_{i,j,k,t}. \qquad (17)$$

Proposed Market Mechanism – Spot Market (1)

Spot market

- Accepts orders at any time
 - An order includes services for **immediate timeslot**
- Performs matchmaking periodically (e.g. every 24 hours)
- Determines the trading price for each match

31

Proposed Market Mechanism – Spot Market (2)

• Bidding language to make orders

Proposed Market Mechanism – Spot Market (3)

Allocation scheme for matchmaking

 Maximizes the total welfare by optimization with mixed integer programming

```
Objective Function
```

```
w = \Sigma (buying order price – selling order price) \rightarrow max.
```

Variables

 $u_i = \{0,1\}$:

 $x_{i,k} = \{0,1\}$:

 $y_{i,i,k} = [0,1]$:

- whether user j's order is fulfilled
- whether user *j* could buy service *k*
- percentage of service k sold by provider i to user j

Proposed Market Mechanism – Spot Market (4)

- Pricing scheme to determine the trading price
 - Distributes the welfare generated by the trading
 - An extended K-pricing scheme is used to calculate the distribution

$$w_{i} = v_{i} - \sum_{k=1}^{|K|} \sum_{i=1}^{|G|} v_{i} y_{i,i,k,t}, \qquad (14)$$
Details described on the paper
$$p_{i,j} = \sum_{k=1}^{1} \sum_{i=1}^{|V|} v_{i} y_{i,j,k,t} + K \sum_{k=1}^{1} \sum_{i=1}^{|V|} w_{j} r_{i,j,k,t}. \qquad (17)$$

Agenda

- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work
- 7. Conclusion

Implementation of Simulator

• Market Simulator W-Mart

- Developed to perform multi-agent simulations
- Designed after U-Mart architecture
- Markets are built on MACE framework
- Two markets run on separate threads

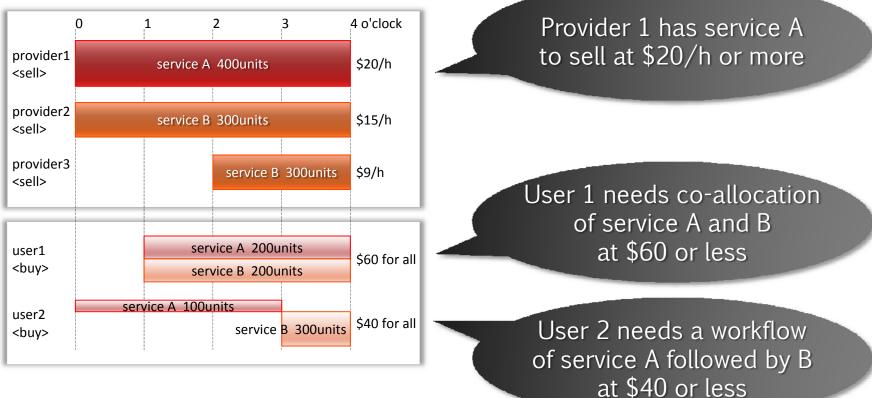
U-Mart ^[2]

- Java test bed of artificial market
- Used in education of economics
- Machines and humans participate equally

MACE [1]

- Java framework for combinational auctions
- Developed for CATNETS project
- CPLEX is used as the backend MIP solver

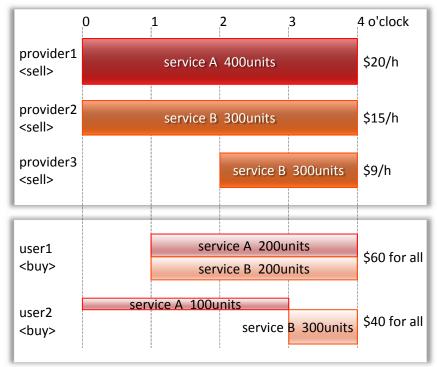
- B Schnizler, D Neumann, D Veit, and D Weinhardt, "Trading grid services a multi-attribute combinatorial approach," European Journal of Operational Research, vol. 187, no. 3, pp. 943-961, 2008.
- [3] H Sato, Y Koyama, K Kurumatani, Y Shiozawa, and H Deguchi, "U-Mart: A Test Bed for Interdisciplinary Research in Agent Based Artificial Market," in Evolutionary Controversies in Economics, pp. 179-190, 2001.

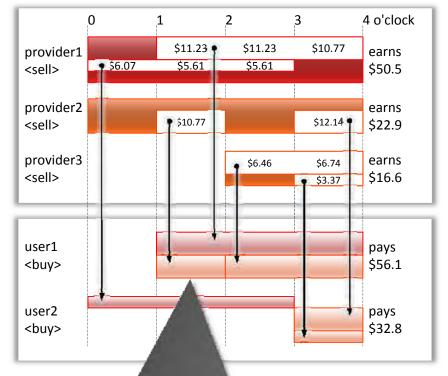

Agenda

- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work
- 7. Conclusion

Verifying the Combinational Allocation (1)

Forward Market


Orders


Verifying the Combinational Allocation (2)

Forward Market

Orders

Outcome

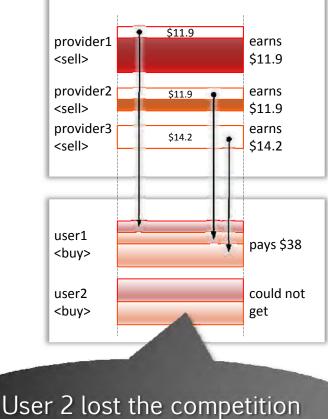
Provider 2 sells service B to user 1 from 1 to 2 o'clock at \$10.77

Verifying the Combinational Allocation (3)

• Spot Market

Orders

provider1 <sell></sell>	service A 400units	\$20
provider2 <sell></sell>	service B 300units	\$15
provider3 <sell></sell>	service B 300units	\$9
user1 <buy></buy>	service A 100units service B 300units	\$60 for all
user2	service A 200units	\$40 for all
<buy></buy>	service B 200units	,


Verifying the Combinational Allocation (4)

Spot Market

Orders

provider1 <sell></sell>	service A 400units	\$20
provider2 <sell></sell>	service B 300units	\$15
provider3 <sell></sell>	service B 300units	\$9
	service A 100units	
user1 <buy></buy>	service B 300units	\$60 for all
user2	service A 200units	\$40 for all
<buy></buy>	service B 200units	३40 IUI all
	i	i

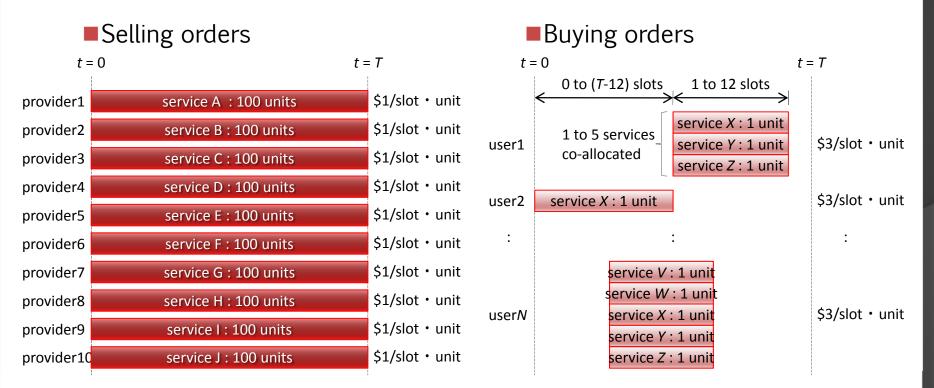
Outcome

and bought nothing at all

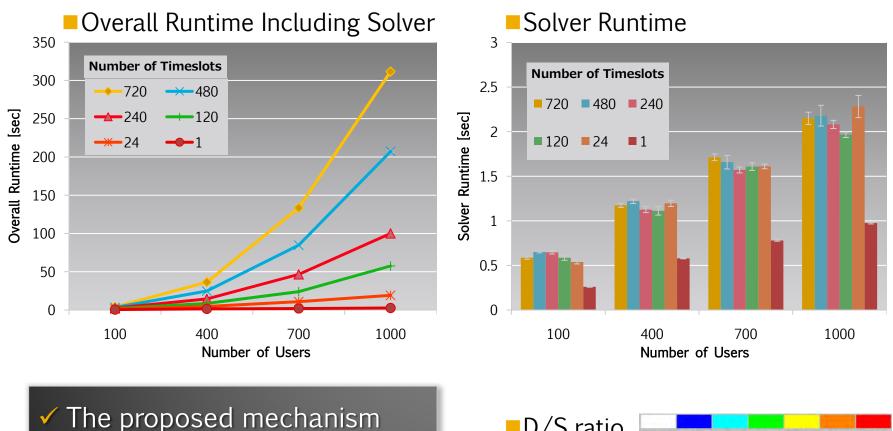
Agenda

- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator

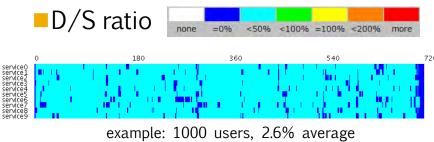
5. Evaluation


- 1. Verifying the combinational allocations
- 2. Estimating scalability
- 6. Related Work

7. Conclusion


Estimating Scalability (1)

Scenario


- 10 providers sell 10 services
- 100-1000 users buy 1-5 services co-allocated for 1-12 hours
- Demand/supply ratio = 2%-16%
- Selling order price < Buying order price

Estimating Scalability (2)

works efficiently for 1 month forward trading with 10 providers and 1000 users

Aida Lab @ National Institute of Informatics 2011.01.21 36

Agenda

- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work
- 7. Conclusion

Related Work

	Combinational	Predictable & flexible	Double-sided competition	Economic efficiency
Proposed	Ø	Ø	Ø	O
MACE [1]	\bigtriangleup	\bigtriangleup	\bigcirc	\bigcirc
SCDA ^[2]	×	×	Ô	\bigtriangleup
Electricity Market	×	\bigcirc	\bigcirc	\bigtriangleup
Stock Market	×	\bigtriangleup	Ô	\bigtriangleup
Commodity Market	×	\bigtriangleup	×	×

[1] B Schnizler, D Neumann, D Veit, and D Weinhardt, "Trading grid services – a multi-attribute combinatorial approach," European Journal of Operational Research, vol. 187, no. 3, pp. 943-961, 2008.

[2] Zhu Tan and John R Gurd, "Market-based grid resource allocation using a stable continuous double auction," in Proc. 8th IEEE/ACM Int. Conf. on Grid Computing (Grid 2007), Austin, USA, pp. 283-290, 2007.

Related Work

	Combinational	Predictable & flexible	Double-sided competition	Economic efficiency			
Proposed	Ø	Ø	Ø	Ô			
MACE [1]	\bigtriangleup	\bigtriangleup	\bigcirc	\bigcirc			
SCDA ^[2] Only the proposed mechanism satisfies these four Market requirements for the cloud computing environment							
Stock Market	\sim	<u> </u>	<u> </u>				
Commodity Market	×	\bigtriangleup	X	X			

1] B Schnizler, D Neumann, D Veit, and D Weinhardt, "Trading grid services – a multi-attribute combinatorial approach," European Journal of Operational Research, vol. 187, no. 3, pp. 943-961, 2008.

 Zhu Tan and John R Gurd, "Market-based grid resource allocation using a stable continuous double auction," in Proc. 8th IEEE/ACM Int. Conf. on Grid Computing (Grid 2007), Austin, USA, pp. 283-290, 2007.

Agenda

- 1. Motivation
- 2. Background
- 3. Proposed Market Mechanism
- 4. Simulator
- 5. Evaluation
 - 1. Verifying the combinational allocations
 - 2. Estimating scalability
- 6. Related Work
- 7. Conclusion

Conclusions and Future Work

Conclusions

- We proposed a market mechanism for resource allocation in the cloud computing environments
- Evaluation showed that the proposed mechanism worked with an acceptable overhead

Future Work

- To investigate the autonomous behavior of the market price using W-Mart simulator
 - What strategy is the best way to trade the services?
 - How can we design a stable and sustainable market?
 - Can we forecast the spot price in the future by observing the forward price?

市場原理に基づく 分散計算サービスの割り当て方法

ご清聴ありがとうございました